Remote Sensing for Lake Management

Assessment of Water Quality of a Eutrophic Lake in North Central Florida

Prepared for:

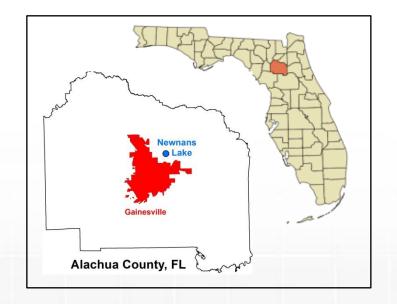
Shruginar 2012 14 May 2012

Kevin Shortelle System Dynamics International, Inc kshortelle@sdi-inc.com

Overview & Objective

Determine if remote sensing data can be used to assess water quality for shallow eutrophic lakes in North Central Florida

- In Situ data collection
- Satellite imagery
- Remote sensing used effectively to assess water quality in deep (> 15 ft) northern lakes *
- Determine applicability of deep water model to shallow lakes (< 10 ft)



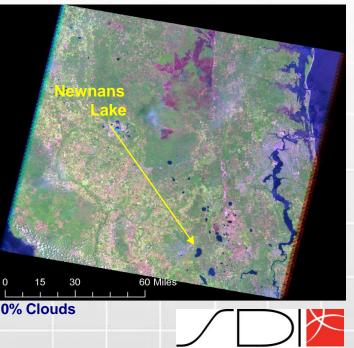
* <u>Remote Sensing Methods for Lake Management: A Guide for Resource Managers and</u> <u>Decision-Makers</u>, NALMS, Madison, WI, 2009

Study Area – Newnans Lake

Hydrological Features

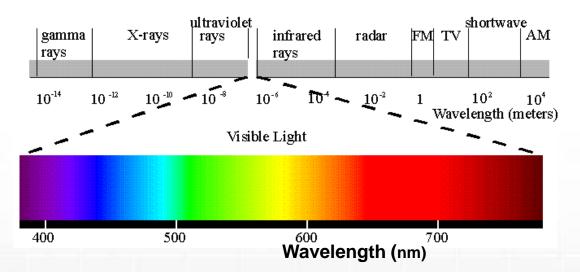
 , ,	
FEATURE	VALUE
Area (acres)	6,600
Average Depth (ft)	4.4
Maximum Depth (ft)	11.5
Volume (ac-ft)	29,000
Average Stage (ft NGVD)	66.5

SJRWMD Tech Pub. SJ2010-1

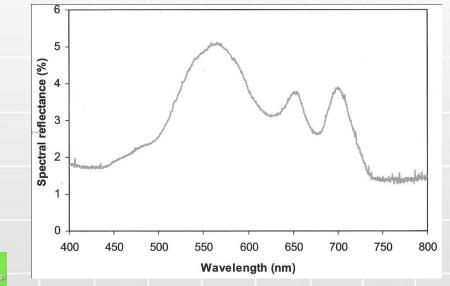


Landsat 5 Thematic Mapper Imagery

Spectral Band (μm)	Band Descriptor	Spatial Resolution (m)	Radiometric Resolution (bits)		Repeat Orbit (days)	Cost per Image (\$)
0.45 - 0.52	Blue (TM1)					
0.52 - 0.60	Green					
0.63 - 0.69	Red (TM3)	30	8	180	16	Free
0.76 - 0.90	Near IR	50	0	100	10	TIEE
1.55 - 1.75	SWIR					
2.08 - 2.35	LWIR					
10.4 - 12.5	Thermal IR	120				


- Available at <u>http://glovis.usgs.gov</u> (as GeoTiff)
- Spatial resolution (≈ 0.1 hectare) suitable for mapping in-lake variability
- Wide spatial extent
- Relatively high temporal resolution
- False Natural Color image shown bands 5,4,3 (SW IR Color Composite)

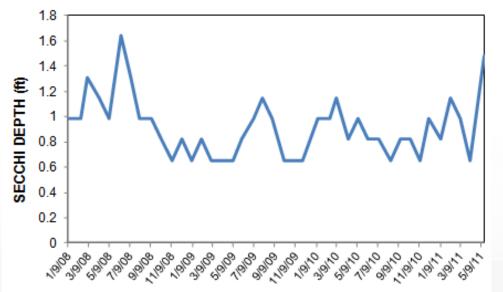
System Dynamics International



Electromagnetic Spectrum

Spectral Reflectance of Eutrophic Lake

Landsat Processing Workflow


- **1.** Access USGS web site and download zipped Landsat data file
- **2.** Unzip and import seven *.TIF files in ERDAS Imagine and convert to *.img files
- **3.** Form composite image from seven *.img files
- 4. Create "chip" of composite image of just Newnans Lake and surrounding area
- 5. Perform unsupervised classification on image chip using eight classes
- 6. Add image chip and classified image chip into ArcMap. Perform Select-by-Attribute query on classified chip to select only classified water feature
- 7. Use water feature as mask to perform Extract-by-Mask on image chip, thereby rendering a water-only raster comprising the seven spectral TM bands
- 8. For water-only raster, determine mean values of TM1 (blue) and TM3 (red) bands (Properties → Symbology → Statistics)

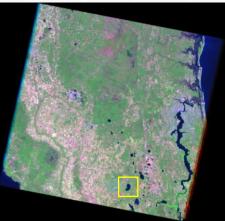
In Situ Data (Secchi Depth, SD)

SAMPLING DATE

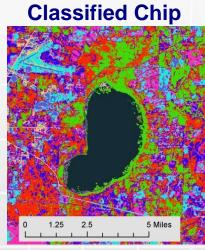
SAMPLEID	COLLECTDATE	SAMPLETYPE	ANALYTENAME	RESULTVALUE	UNITS
L20080785-005	3/6/2008	VERT-INT	Secchi	0.4	m
L20080975-005	4/9/2008	VERT-INT	Secchi	0.35	m
L20081130-001	5/8/2008	VERT-INT	Secchi	0.3	m
L20081298-005	6/12/2008	VERT-INT	Secchi	0.5	m
L20081441-005	7/10/2008	VERT-INT	Secchi	0.4	m
L20081612-001	8/7/2008	VERT-INT	Secchi	0.3	m
L20081786-005	9/10/2008	VERT-INT	Secchi	0.3	m
L20090052-002	10/9/2008	VERT-INT	Secchi	0.25	m
L20090272-001	11/11/2008	VERT-INT	Secchi	0.2	m
L20090423-004	12/9/2008	VERT-INT	Secchi	0.25	m
L20090566-001	1/8/2009	VERT-INT	Secchi	0.2	m
L20090696-001	2/5/2009	VERT-INT	Secchi	0.25	m
L20090845-002	3/4/2009	VERT-INT	Secchi	0.2	m

Courtesy of SJRWMD

- Secchi depth, turbidity, chlorophyll a, total suspended solids
- High temporal resolution



Data Summary


Landsat Image Filename (Path 17/Row 39)	Image Acquisiton Date	Mean TM1	Mean TM3	In Situ Data Collection Date	<i>In Situ</i> Secchi Depth Value (ft)
LT50170392009034GNC01	2/3/2009	43.95	14.33	2/5/2009	0.82
LT50170392010309GNC01	11/5/2010	46.54	15.62	11/9/2010	0.66
LT50170392011008EDC00	1/8/2011	40.95	13.29	1/11/2011	0.82
LT501703920110040GNC01	2/9/2011	47.48	14.59	2/8/2011	1.15
LT50170392011072GNC01	3/13/2001	53.43	19.12	3/8/2011	0.98

LT50170392011072GNC01

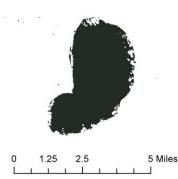


Image Chip

Water-Only Raster

Calibrate TM data with *in situ* SD measurements and use that relationship to predict SD from other TM data

Determine applicability of model used to predict water quality for deep Northern lakes

ln(SD) = a(TM1) + b(TM1/TM3) + c

• Perform multiple regression analysis in Excel to estimate model coefficients based on TM and *in situ* calibration data

Regression St	ression Statistics				
Multiple R	0.997262864				
R Square	0.99453322				
Adjusted R Square	0.983599661				
Standard Error	0.029374361				
Observations	4				

ssion Sta	atistics						
	0.997262864		Coefficients	Standard Error	t Stat	P-value	
	0.99453322	1. to the second	-6.263222	0.474338156	-13.2041	0.048122	
Square	0.983599661	X Variable 1	-0.0027597	0.006069129	-0.45472	0.728309	
or	0.029374361	X Variable 2	2.00887574	0.154562162	12.9972	0.048885	

Estimated Model Coefficients:

a = -0.0027597 b = 2.00887574 c = -6.26322

Model Formulation

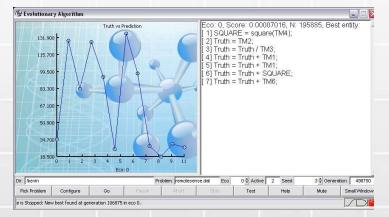
Model Prediction

- Use estimated coefficients to predict Secchi Depth based on TM1 and TM3 data
- Model yielded poor prediction of Secchi Depth

ln(SD) = -0.002759(53.43) + 2.00887(53.43/19.12) - 6.26322

In(SD) = -1.022, so SD = 0.36 ft (vs. 0.98 ft, actual value)

- Why did model perform poorly?
 - -Insufficient number of calibration samples?
 - -Northern lake model not appropriate for Florida lakes?
 - Reflectance from vegetation, sediment, and lake bottom affects spectral signatures
 - Time interval between Landsat image acquisition and *in situ* data collection more critical for shallow lakes since water quality can change abruptly based on weather conditions (thunderstorms, runoff, etc.)

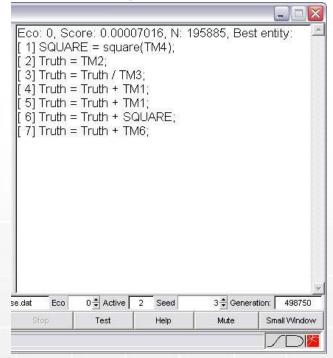


What's a Possible Solution?

- Develop model that considers:
 - All seven TM spectral bands
 - Alternative water quality metrics (e.g., chlorophyll a, turbidity, TSS)

Water Quality Metric = f(TM1, TM2, ..., TM7)

- Use genetic algorithm to estimate functional relationship (i.e., model) between TM data and *in situ* water quality metric
- Hypothetical example shown on next chart



Genetic Algorithm Illustration

Water Quality Metric (Truth)	TM1	TM2	TM3	TM4	TM5	TM6	TM7
29.9	2	6	7	4	3	9	1
94.8	4	9	12	9	7	5	5
63.0	8	4	4	6	7	10	1
93.7	5	5	7	9	3	2	3
70.8	8	11	4	7	9	3	6
23.3	4	7	3	2	8	9	3
99.5	8	6	4	9	2	1	5
73.0	9	9	3	7	9	3	3
25.3	7	5	4	2	4	6	6
18.5	4	3	2	1	9	8	7
26.7	1	2	3	4	7	8	9
24.4	7	4	9	1	5	9	6

Hypothetical Data

Genetic Algorithm Solution

Pseudo-code reduces to:

Truth = $2(TM1) + (TM2/TM3) + (TM4)^2 + TM6$

Questions?

